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I. ESSENTIAL RESULTS FROM COMPLEX ANALYSIS

I.1. Holomorphic functions.
Definition 1. A domain is an open, connected subset of C.

Throughout this section, let U ⊆ C be an open set and f : U → C be a function.

Definition 2. Let U ⊆ C be an open set. A function f : U → C is differentiable at z ∈ U if
the limit

lim
h→0

f (z + h)− f (z)
h

exists.

Remark 3. Here h is tending to 0 in C! So this is a “two-dimensional” limit, just like in
multivariable calculus.

Given a function f : U → C, we can write it as f (z) = u(x, y) + iv(x, y), where u, v :
R2 → R. The Cauchy-Riemann equations give a convenient way to check that a function
is differentiable at a point.

Theorem 4. Suppose that the partial derivatives ux, uy, vx, vy exist on U. If each of these partials
is continuous at z0 ∈ U and if the Cauchy-Riemann equations

ux(z0) = vy(z0) uy(z0) = −vx(z0) (1)

are satisfied at z0, then f is differentiable at z0.
Definition 5. Suppose U ⊆ C is a nonempty open set and f : U → C. If f is differentiable
at every point of U, then f is holomorphic on U. A function holomorphic on all of C is
called entire.

Example 6. Polynomials, ez, sin(z), and cos(z) are all entire. Rational functions are holo-
morphic wherever they are defined.
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I.2. Cauchy integral formula and consequences.

Theorem 7 (Cauchy’s Integral Theorem). Let U ⊆ C be a simply-connected open set, let
f : U → C be a holomorphic function, and let γ : [0, 1]→ U be a smooth closed curve. Then∫

γ
f (z) dz = 0 .

Theorem 8 (Cauchy Integral Formula). Let γ : [0, 1] → C be a simple closed curve oriented
counterclockwise, and suppose that f is holomorphic on some domain U containing γ and its
interior. Then

f (z0) =
1

2πi

∫
γ

f (z)
z− z0

dz

for any z0 inside γ.

Remark 9. Here we are implicitly assuming the Jordan curve theorem.

Theorem 10 (Holomorphic implies infinitely differentiable). If f : U → C is holomorphic,
then so is f ′. Moreover, f ′ is given by

f ′(z) =
1

2πi

∫
γ

f (ζ)
(ζ − z)2 dζ

where γ is any simple closed curve in U oriented counterclockwise containing z in its interior.

Corollary 11. If f : U → C is holomorphic, then it is infinitely differentiable. Moreover,

f (k)(z) =
k!

2πi

∫
γ

f (ζ)
(ζ − z)k+1 dζ

where γ is as above.

Theorem 12 (Holomorphic implies analytic). Suppose that f : U → C is holomorphic and
z0 ∈ U is a point such that the open disc D := D(z0, r) ⊆ U. Then f is equal to its Taylor series
on D, i.e.,

f (z) =
∞

∑
n=0

an(z− z0)
n

for every z ∈ D, where an =
f (n)(z0)

n!
.

Theorem 13 (Liouville). The only bounded entire functions are constant functions.

Theorem 14 (Identity Theorem). Let D be a domain, and suppose that f , g : D → C are
analytic. If f (z) = g(z) for all z in some set S with a limit point in D, then f = g.

Definition 15. Let U ⊆ C be an open set and f : U → C be a function. If f (V) is open for
all open subsets V ⊆ U, then f is an open mapping.

Theorem 16 (Open Mapping Theorem). If a function f is analytic and nonconstant on a do-
main D ⊆ C, then f is an open mapping on D. In particular, f (D) is also a domain.
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II. RIEMANN SURFACES

II.1. Definitions and first examples.

Definition 17. A topological surface X is a Hausdorff, second-countable space equipped
with a collection of coordinate charts {(Ui, ϕi)}i where Ui is an open subset of X, and
ϕi : Ui → Ûi is a homeomorphism from Ui to an open subset Ûi = ϕi(Ui) ⊆ C for each i,
satisfying the following conditions.

(1) {Ui}i is open cover of X, i.e.,
⋃

i

Ui = C; and

(2) Whenever Ui ∩Uj 6= ∅, the transition function

ϕj ◦ ϕ−1
i : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj)

is a homeomorphism.

Such a collection of charts is called an atlas, and the inverse ϕ−1
i of a coordinate map is

called a parametrization.

Remark 18. I think condition (2) is actually redundant, but the terminology is useful to
have.

Definition 19. A Riemann surface is a connected topological surface such that the transition
functions of the atlas are holomorphic. Such an atlas is called a holomorphic atlas.

Remark 20. Other types of manifolds can be defined analogously by changing the re-
quirement on the transition functions. E.g., a smooth surface is one whose transition
functions are C∞.

Example 21.
(1) C, or any open subset U ⊆ C is a Riemann surface. Moreover, they can be covered

by a single chart. Two important example are the upper half-plane

H := {z ∈ C : Im(z) > 0}
and the open unit disc

D := {z ∈ C : |z| < 1} .

(2) The sphere S2. Let

S2 = {(x, y, t) ∈ R3 : x2 + y2 + t2 = 1} .

We define a holomorphic atlas on S2 as follows. Let

U1 = S2 \ {(0, 0, 1)}, ϕ1(x, y, t) =
x

1− t
+ i

y
1− t

U2 = S2 \ {(0, 0,−1)}, ϕ2(x, y, t) =
x

1 + t
− i

y
1 + t

.

(Note that these coordinate maps are the stereographic projections from the north
and south pole, respectively.) One can compute that (ϕ2 ◦ ϕ−1

1 )(z) = 1/z where z
is the varlable on ϕ1(U1).
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(3) The Riemann sphere Ĉ. We define Ĉ topologically to be the one-point compactifi-
cation of C. This means that Ĉ = C∪ {∞} as a set. We define the topology on Ĉ to
consist of:
• the open subsets of C; and
• the sets (C \ K) ∪ {∞}, where K ⊆ C is a compact subset.

(So the family of sets D(∞, R) := {z ∈ C : |z| > R} ∪ {∞} forms a neighborhood
basis of ∞.)

We define an atlas on Ĉ by:

U1 = C, ϕ1(z) = z

U2 = Ĉ \ {0}, ϕ2(z) =

{
1/z if z 6= ∞
0 if z = ∞ .

(4) The projective line P1. Define

P1 =
C2 \ {(0, 0)}

∼
where ∼ is the equivalence relation defined by: given v ∈ C2 \ {(0, 0)}, v ∼ λv
for all λ ∈ C×. Given (z0, z1) ∈ C2, denote its equivalence class in P1 by [z0 : z1].
Thus [z0 : z1] = [λz0 : λz1] for all λ ∈ C×.

We define an atlas on P1 by:

U0 = {[z0 : z1] ∈ P1 : z0 6= 0}, ϕ0([z0 : z1]) =
z1

z0

U1 = {[z0 : z1] ∈ P1 : z1 6= 0}, ϕ1([z0 : z1]) =
z0

z1

(5) A complex torus. Fix ω1, ω2 ∈ C that are R-linearly independent, and let Λ =
Zω1 ⊕Zω2 be the lattice they span. (A good example to keep in mind is Λ =
Z[i] = Z⊕ iZ.) Then Λ acts on C by addition. Let X be the quotient C/Λ, whose
elements are orbits:

[z] = z + Λ = {z + ω : ω ∈ Λ} .

We equip C/Λ with the quotient topology, so U ⊆ C/Λ is open iff π−1(U) ⊆ C is
open, where π : C→ C/Λ is the quotient map z 7→ z + Λ.

Given an open subset U ⊆ X, then π(π−1(U)) so U is the image of an open
subset of U under π. Conversely, π is an open map: given V ⊆ C open, then

π−1(π(V)) =
⋃

ω∈Λ

(ω + V) .

Each ω + V is the translate of an open set, so π−1(π(V)) is a union of open sets,
hence is open.

We now define an atlas on X. First, note that since Λ is discrete, there there exists
ε > 0 such that |ω| > 2ε for all 0 6= ω ∈ Λ. (For instance, in the case Λ = Z[i] we
could take any ε < 1/2.) Fix such an ε. Given s ∈ C, let Ds = D(s, ε). Note that
all elements of Ds are distinct mod Λ.
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We claim that for any s ∈ C and any such ε, π|Ds : Ds → π(Ds) ⊆ C/Λ is a
homeomorphism. It is continuous, surjective, and open because π is, and it is also
injective by the choice of ε. For each s ∈ C, define ϕs : π(Ds)→ Ds to be (π|Ds)

−1.
Then {(Ds, ϕs) : s ∈ C} is an atlas on X, so X is a topological surface. One can even
show that this gives a holomorphic atlas (which I’ll probably give as homework),
so X is a Riemann surface.

Remark 22. The textbook glosses over an important point. Say we take our atlas and
throw in another open subset that is contained in one of the charts in our atlas, equipping
them with the restriction of the coordinate map. Is this a different Riemann surface?
According to our definition, yes, but intuitively we would think these two atlases are
equivalent in some sense.

The notion of the equivalence of two atlases is treated carefully in Miranda’s Algebraic
Curves and Riemann Surfaces. The upshot is that every atlas is contained in a unique max-
imal atlas.

All of these examples seem very topological, but many important examples arise from
algebraic geometry. We’ll pursue this idea more systematically next time, but let’s just try
to build some intuition by looking at a concrete example.

Example 23. Let X = {(x, y) ∈ C2 : y2 = x3 − x}. Here’s a graph of its real points.

Let f (x) = x3 − x = x(x − 1)(x + 1) and let F(x, y) = y2 − f (x). Given a point P =
(x0, y0) such that the tangent line at P isn’t vertical, i.e., whenever Fy(P) = 2y0 6= 0, we
can restrict the projection (x, y) 7→ x onto the x-axis to a neighborhood of P in order to
define a coordinate chart at P. When Fy(P) = y0 = 0, we can instead restrict the projection
(x, y) 7→ y onto the y-axis to define a coordinate chart at P.

Remark 24. The idea above can be generalized and made rigorous using the Inverse Func-
tion Theorem, which we’ll discuss next time.
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